4.4 Article

Complex network analysis reveals novel essential properties of competition among individuals in an even-aged plant population

Journal

ECOLOGICAL COMPLEXITY
Volume 26, Issue -, Pages 95-116

Publisher

ELSEVIER
DOI: 10.1016/j.ecocom.2016.03.005

Keywords

Self-thinning; Growth suppression; Individual-level; Degree distribution; Heavy-tailed distribution; Vulnerability

Categories

Funding

  1. Institute of Low Temperature Science, Hokkaido University
  2. Grants-in-Aid for Scientific Research [26310305] Funding Source: KAKEN

Ask authors/readers for more resources

Little is known about the network structure of competition in large populations of plants, despite the importance of such knowledge for understanding population dynamics. In this study, we used complex network analysis to examine temporal changes in the network structure of competition in an even-aged multi-individual stand of the Sakhalin fir Abies sachalinensis in Hokkaido, Japan. Using census data, which were measured over 30 years (1948-1978; seedlings were planted in 1929), on the sizes and locations of these plants, we regarded a plant as a node and competition between plants as a link. We then introduced two indices, the binary and weighted out-degrees (BO and WO, respectively), to interpret complicated plant interactions. The BO of a plant represents the number of links from the target plant to its neighbors, and the WO is the total strength of competition from the target plant to its neighbors. The analysis showed that the distributions of BO and WO were heavy-tailed in all years and that large plants had large BO and WO. These results suggest that only a few (i.e., large) plants have a very large impact on the growth and survival of a much larger number of neighboring plants and thus on population dynamics, whereas most of the others (i.e., small and medium-sized plants) have only a small impact on a few neighbors. By introducing binary and weighted connectivities (BC and WC, respectively), we were able to identify the size classes of neighbors with which the target plant preferentially and strongly competed. The BC and WC results showed that large plants competed preferentially and more strongly with other large plants in 1948, but they competed more strongly with small plants after 1963. These results clarify targets of the very large impact of large plants, as shown by the results of BO and WO: the impact was exerted on the growth and survival of other large plants in 1948, whereas the impact was exerted on those of small plants after 1963. Our study demonstrates that the statistical properties of the competition network structure, which have been largely ignored in plant competition research, are important for understanding plant population dynamics. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available