4.6 Article

Phenolic and free amino acid profiles of bee bread and bee pollen with the same botanical origin - similarities and differences

Journal

ARABIAN JOURNAL OF CHEMISTRY
Volume 14, Issue 3, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.arabjc.2021.103004

Keywords

Bee bread; Bee pollen; Amino acids; Phenolic compounds; PCA analysis; Chemical analysis

Funding

  1. Hacettepe University [FHD-2018-16748]

Ask authors/readers for more resources

This study analyzed the chemical profiles of bee pollen and bee bread samples from the same beehive, identifying differences in concentrations of certain compounds between the two products. The amino acid profile had a significant impact on differentiating between bee pollen and bee bread samples.
In this study, the chemical profile of bee pollen (BP) and bee bread (BB) samples collected from the same beehive were analyzed by LC-MS/MS (liquid chromatography technique coupled with tandem mass spectrometry), providing the identification of 23 phenolic compounds and 42 free amino acids (FAAs). Rutin was the phenolic compound with the highest rate of occurrence in both BP and BB samples. However, concentrations of protocatechuic acid, 2,5-dihydroxybenzoic acid and kaempferol compounds were significantly higher in BB samples than in BP samples from the same hive probably as result of microbial activity and glycosides degradation. The obtained data revealed that the phenolic profiles of the samples differ not only by the type of a product but also by region. Among FAAs proline was the predominant compound in all the analyzed BP and BB samples followed by L-asparagine (BP samples) and L-aspartic acid (BP and BB samples). A high content of proline can be used as a parameter of sample freshness. Also, Principal Component Analysis (PCA) and Cluster analysis proved the possibility of using phlorizin as a chemotaxonomic marker for Rosaceae (Malus or Prunus genus) pollen presence in BP1 sample. In addition, amino acid profile had higher impact on BP and BB sample differentiation due to lower FAAs content in BB samples probably caused by microbial activity. To the best of our knowledge, this study is the first to compare the individual phenolic compounds and free amino acids of bee pollen and bee bread samples with the same botanical origin (predominantly originated from plants belonging to the following families: Asteraceae, Fabaceae, Plantaginaceae and Rosaceae). (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available