4.8 Article

Ferroptotic damage promotes pancreatic tumorigenesis through a TMEM173/STING-dependent DNA sensor pathway

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-020-20154-8

Keywords

-

Funding

  1. Natural Science Foundation of Jilin Province of China [20160101062JC]
  2. Health Foundation of the Finance Department of Jilin Province [sczsy201516]
  3. National Natural Science Foundation of China [30870355, 81370497]

Ask authors/readers for more resources

Ferroptosis is a more recently recognized form of cell death that relies on iron-mediated oxidative damage. Here, we evaluate the impact of high-iron diets or depletion of Gpx4, an antioxidant enzyme reported as an important ferroptosis suppressor, in the pancreas of mice with cerulean- or L-arginine-induced pancreatitis, and in an oncogenic Kras murine model of spontaneous pancreatic ductal adenocarcinoma (PDAC). We find that either high-iron diets or Gpx4 depletion promotes 8-OHG release and thus activates the TMEM173/STING-dependent DNA sensor pathway, which results in macrophage infiltration and activation during Kras-driven PDAC in mice. Consequently, the administration of liproxstatin-1 (a ferroptosis inhibitor), clophosome-mediated macrophage depletion, or pharmacological and genetic inhibition of the 8-OHG-TMEM173 pathway suppresses Kras-driven pancreatic tumorigenesis in mice. GPX4 is also a prognostic marker in patients with PDAC. These findings provide pathological and mechanistic insights into ferroptotic damage in PDAC tumorigenesis in mice. Ferroptosis is an iron-dependent mechanism of cell death. In this mouse study, the authors show that diets high in iron or depletion of the antioxidant Gpx4 potentiates pancreatic damage and tumour formation by activating the DNA damage pathway and recruiting macrophages to the pancreas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available