4.8 Article

Scalable multiple whole-genome alignment and locally collinear block construction with SibeliaZ

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-19777-8

Keywords

-

Funding

  1. NSF [DBI-1356529, CCF-1439057, IIS1453527, IIS-1421908]
  2. National Institute Of General Medical Sciences of the National Institutes of Health [R01GM130691]

Ask authors/readers for more resources

Multiple whole-genome alignment is a challenging problem in bioinformatics. Despite many successes, current methods are not able to keep up with the growing number, length, and complexity of assembled genomes, especially when computational resources are limited. Approaches based on compacted de Bruijn graphs to identify and extend anchors into locally collinear blocks have potential for scalability, but current methods do not scale to mammalian genomes. We present an algorithm, SibeliaZ-LCB, for identifying collinear blocks in closely related genomes based on analysis of the de Bruijn graph. We further incorporate this into a multiple whole-genome alignment pipeline called SibeliaZ. SibeliaZ shows run-time improvements over other methods while maintaining accuracy. On sixteen recently-assembled strains of mice, SibeliaZ runs in under 16 hours on a single machine, while other tools did not run to completion for eight mice within a week. SibeliaZ makes a significant step towards improving scalability of multiple whole-genome alignment and collinear block reconstruction algorithms on a single machine. Multiple whole-genome alignment is a challenging problem in bioinformatics, especially when computational resources are limited. Here the authors present SibeliaZ, an algorithm and software based on analysis of de Bruijn graphs, which provides improved computational efficiency and scalability.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available