4.8 Article

Stabilizing the closed SARS-CoV-2 spike trimer

Journal

NATURE COMMUNICATIONS
Volume 12, Issue 1, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41467-020-20321-x

Keywords

-

Ask authors/readers for more resources

Researchers have successfully created a stable variant of the SARS-CoV-2 S protein through structure-based design, with increased expression and correct folding predominantly in a closed prefusion conformation. This contributes to supporting vaccine development efforts.
The trimeric spike (S) protein of SARS-CoV-2 is the primary focus of most vaccine design and development efforts. Due to intrinsic instability typical of class I fusion proteins, S tends to prematurely refold to the post-fusion conformation, compromising immunogenic properties and prefusion trimer yields. To support ongoing vaccine development efforts, we report the structure-based design of soluble S trimers with increased yields and stabilities, based on introduction of single point mutations and disulfide-bridges. We identify regions critical for stability: the heptad repeat region 1, the SD1 domain and position 614 in SD2. We combine a minimal selection of mostly interprotomeric mutations to create a stable S-closed variant with a 6.4-fold higher expression than the parental construct while no longer containing a heterologous trimerization domain. The cryo-EM structure reveals a correctly folded, predominantly closed pre-fusion conformation. Highly stable and well producing S protein and the increased understanding of S protein structure will support vaccine development and serological diagnostics. SARS-CoV-2 S protein prematurely refolds to the post-fusion conformation, compromising immunogenic properties and prefusion trimer yield. Here, Juraszek et al. present a stable SARS-CoV-2 S-closed protein variant with increased expression and correct folding, predominantly in closed prefusion conformation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available