4.8 Article

Polycarbonate-based ultra-pH sensitive nanoparticles improve therapeutic window

Journal

NATURE COMMUNICATIONS
Volume 11, Issue 1, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/s41467-020-19651-7

Keywords

-

Funding

  1. National Institutes of Health [U54CA244719, R01CA216839, U01CA218422]
  2. Mendelson-Young endowment in cancer therapeutics

Ask authors/readers for more resources

Stimuli-sensitive nanomaterials with cooperative response are capable of converting subtle and gradual biological variations into robust outputs to improve the precision of diagnostic or therapeutic outcomes. In this study, we report the design, synthesis and characterization of a series of degradable ultra-pH sensitive (dUPS) polymers that amplify small acidic pH changes to efficacious therapeutic outputs. A hydrolytically active polycarbonate backbone is used to construct the polymer with pH-dependent degradation kinetics. One dUPS polymer, PSC7A, can achieve activation of the stimulator of interferon genes and antigen delivery upon endosomal pH activation, leading to T cell-mediated antitumor immunity. While a non-degradable UPS polymer induces granulomatous inflammation that persists over months at the injection site, degradable PSC7A primes a transient acute inflammatory response followed by polymer degradation and complete tissue healing. The improved therapeutic window of the dUPS polymers opens up opportunities in pH-targeted drug and protein therapy. Stimuli-responsive nanomaterials offer the opportunity to exploit nanoscale cooperativity to improve the precision of diagnostic or therapeutic outcomes. Here, the authors report the design, synthesis and characterization of a series of degradable ultra-pH sensitive polymers that amplify small acidic pH changes to efficacious therapeutic outputs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available