4.5 Article

A Negative Feedback Loop Between NAMPT and TGF-β Signaling Pathway in Colorectal Cancer Cells

Journal

ONCOTARGETS AND THERAPY
Volume 14, Issue -, Pages 187-198

Publisher

DOVE MEDICAL PRESS LTD
DOI: 10.2147/OTT.S282367

Keywords

miR-1-3p; nicotinamide phosphoribosyltransferase; regulatory mechanism; Smad; tumorigenesis

Funding

  1. Jinshan District Commission of Health and Family Planning [JSKJ-KTMS -2018-05]
  2. Qi Hang Project of Jinshan Hospital, Fudan University [2018-JSYYQH-05]
  3. Jinshan Health Commission [JSYQ201904]
  4. Key Construction Project on Clinical Pharmacy of Shanghai [2019-1229]
  5. National Natural Science Foundation of China [81872121]
  6. Fourth Training Program for the Outstanding Young Talents

Ask authors/readers for more resources

NAMPT is overexpressed in colorectal cancer (CRC) and associated with short overall survival. It promotes the protein expression levels of components in the transforming growth factor-beta (TGF-beta) signaling pathway and TGF-beta 1 secretion. Treatment with TGF-beta 1 down-regulates NAMPT expression in CRC cells, partly through up-regulation of miR-1-3p that directly binds to the NAMPT 3'-UTR.
Background: Nicotinamide phosphoribosyltransferase (NAMPT) and the transforming growth factor-beta (TGF-beta) signaling pathway play important roles in colorectal tumorigenesis and progress. However, the underlying regulatory mechanisms between NAMPT and TGF-beta signaling in colorectal cancer (CRC) remain poorly understood. Methods: Public data were extracted from the Oncomine database and the PrognoScan database to investigate the mRNA expression and the prognostic value of NAMPT, respectively, in CRC. Western blot tests were performed to detect Smad2, Smad3, p-Smad2, p-Smad3, Smad4 expression in CRC cells transfected with human NAMPT-siRNA or NAMPT-overexpressing plasmid. TGF-beta 1 concentrations in culture supernatants were assayed using ELISA kits. The effect of TGF-beta 1 on NAMPT expression was evaluated by quantitative real-time PCR and Western blot. The dual-luciferase reporter assay was employed to confirm the binding of miR-1-3p to NAMPT 3'-UTR. Subsequently, NAMPT levels in HCT116 cells transfected with the mimics and inhibitors of miR-1-3p were detected by quantitative real-time PCR and Western blot. Results: NAMPT was overexpressed in human CRC and was correlated with short overall survival. NAMPT increased the protein expression levels of components in the TGF-beta signaling pathway including Smad2, Smad3, and Smad4. Moreover, NAMPT promoted TGF-beta 1 secretion. Intriguingly, the TGF-beta 1 treatment down-regulated NAMPT expression at mRNA and protein levels in CRC cells which were partly through the up-regulation of miR-1-3p that directly bound to the NAMPT 3'-UTR. These outcomes demonstrated that NAMPT was a downstream target of miR-1-3p and there was a negative association between NAMPT and miR-1-3p in CRC. Conclusion: There is a negative feedback loop between NAMPT and the TGF-beta signaling pathway in CRC cells, providing new insight into the mechanism underlying the regulatory pathways in CRC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available