4.8 Article

Hydroxyapatite crystallization-based phosphorus recovery coupling with the nitrogen removal through partial nitritation/anammox in a single reactor

Journal

WATER RESEARCH
Volume 187, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.watres.2020.116444

Keywords

one-stage; partial nitritation; anammox; hydroxyapatite crystallization; nitrogen removal; phosphorus recovery

Funding

  1. Japan Society for the Promotion of Science (JSPS) KAKENHI [19H01160]
  2. China Scholarship Council [201606460046]
  3. Grants-in-Aid for Scientific Research [19H01160] Funding Source: KAKEN

Ask authors/readers for more resources

For digestion effluent treatment, while the anammox-based process has been successfully applied for ni-trogen removal, in most cases, phosphorus (P) represents another major concern. In this study, a novel process, integrating the partial nitritation/anammox and hydroxyapatite crystallization (PNA-HAP) in a single airlift reactor, was developed for the simultaneous nitrogen removal and P recovery from synthetic digestion effluent. With a stable influent P concentration of 20.0 mg/L, an HRT of 6 h, and alternating increases of influent calcium and ammonium, the final achieved nitrogen removal rate was 1.2 kg/m3/d and the P removal efficiency was 83.0%. The settleability of sludge was desirably enhanced with the calcium addition and a high biomass concentration was achieved in reactor. Quantitative and qualitative analyses confirmed that HAP was the main inorganic content in sludge, which could be harvested for P recovery. According to the Scanning Electron Microscope observation and the Energy Dispersive X-ray spectrometry analysis, the microbes were mainly distributed on the outer layer of the sludge aggregate, while the HAP mainly in the interior. The relevant theoretical calculation also revealed that the sludge discharge manipulation has direct effect on the sludge composition and aggregate structure. In sum, the results are evidence of the feasibility of simultaneous nitrogen removal and P recovery through one-stage PNA-HAP process for digestion effluent. (c) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available