4.7 Review

Review on fat replacement using protein-based microparticulated powders or microgels: A textural perspective

Journal

TRENDS IN FOOD SCIENCE & TECHNOLOGY
Volume 106, Issue -, Pages 457-468

Publisher

ELSEVIER SCIENCE LONDON
DOI: 10.1016/j.tifs.2020.10.032

Keywords

Fat replacer; Fat mimetic; Microparticulated; Plant protein; Tribology; Microgels

Funding

  1. European Research Council (ERC) under the European Union [757993]
  2. European Research Council (ERC) [757993] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Background: Due to the growing rise in obesity and food-linked diseases, the replacement of calorie-dense fat has been a key focus of food industries in the last few decades with proteins being identified as promising fat replacers (FRs). Scope and approach: This review aims to provide an overview of animal and plant protein-based FR studies that have been performed in the last 5 years. Protein isolates/concentrates, their microparticulated forms and protein microgels in model and real foods have been examined. Special emphasis has been given on the characterisation techniques that have been used to compare the full fat (FF) and low fat (LF) versions of the foods using FRs. Key findings and conclusions: Microparticulated whey protein (MWP) has been the preferred choice FR with some success in replacing fat in model foods and dairy applications. Plant proteins on the other hand have attracted limited research attention as FRs, but show success similar to that of animal proteins. Key characterisation techniques used to compare full fat with low fat products containing FRs have been apparent viscosity, texture profile analysis, microscopy, particle size and sensory properties with oral tribology being a relatively recent undertaking. Coupling tribology with adsorption techniques (muco-adhesion) can be effective to bridge the instrumental-sensory property gap and might accelerate the development cycle of designing low/no fat products. From a formulation viewpoint, sub-micron sized microgels that show shear-thinning behaviour and have boundary lubrication properties offer promises with respect to exploiting their fat replacement potential in the future.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available