4.5 Article

Crustal and upper-mantle structure of the Eastern Caribbean and Northern Venezuela from passive Rayleigh wave tomography

Journal

TECTONOPHYSICS
Volume 804, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.tecto.2020.228711

Keywords

Ambient noise tomography; Eastern Caribbean; Large igneous province; Subduction; Monte Carlo inversion

Ask authors/readers for more resources

The study using ambient noise tomography reveals unique lithospheric velocity structures in the Eastern Caribbean and Northern Venezuela, reflecting the geological history and tectonic evolution of the region. Variations in shear velocity profiles across different areas show differences from the global average, consistent with findings in other large igneous provinces.
We explore the shear-wave lithospheric velocity structure of the Eastern Caribbean and Northern Venezuela using ambient noise tomography with stations deployed around the study area. We construct cross-correlation functions from continuous seismic records, and measure phase velocities of fundamental-mode Rayleigh waves. These velocities are further projected onto 0.6 degrees x0.6 degrees phase velocity grids for each period between 5 s and 50 s. The pseudo-dispersion curve at each grid point is inverted for 1D shear velocity profiles by using a Markov Chain Monte Carlo scheme. The interpolated 3D velocity model shows that the mean shear velocity of the Eastern Caribbean lithospheric mantle is lower than the global average, which is in agreement with values reported in other large igneous provinces. We interpret that low velocities in the lithospheric keel are associated with an anomalous composition and/or an elevated thermal state; this gives the Caribbean plate a high buoyancy that determines the subduction polarities in the region. The results also indicate that: (a) the mantle beneath Northern Venezuela retains compositional anomalies related to extension processes of different ages; (b) the overriding of the Caribbean plate by the Great Antilles arc seems to be much slower than previously suggested; and (c) the localized volcanism in the center of the Lesser Antilles arc is related to asthenospheric flow through the tear induced on the subducted slab by major strike-slip faults.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available