4.4 Article

Characterization of oxide-supported Cu by infrared measurements on adsorbed CO

Journal

SURFACE SCIENCE
Volume 703, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.susc.2020.121725

Keywords

Copper catalyst; support effects; CO adsorption; infrared dipole coupling; surface charging

Funding

  1. VILLUM FONDEN [9455]

Ask authors/readers for more resources

Infrared spectroscopy was used to evaluate the support effects on Cu surface properties, showing that Cu surface charging and frequency shifts are dependent on the support materials. Different supports can lead to changes in the interaction with adsorbates and impact the catalytic properties of the Cu surface.
Infrared spectroscopy on CO chemisorbed on Raney Cu and materials with Cu dispersed as nanoparticles on oxide supports was used to evaluate support effects on the Cu surface properties. The C-O frequency (nu(C-O)) is sensitive to the charge on the adsorption site with.C-O being high on Cu+, intermediate on Cu degrees, and low on Cu-, whereby this method can probe the charging state of the Cu surface. The Raney Cu reference demonstrates the complex analysis of the IR band intensity, which can be susceptible to dipole coupling. This means that the most intense IR bands may be higher frequency bands strengthened by such coupling effects rather than the bands arising from the most abundant sites. The nu(C-O) of the major band attributable to CO adsorbed on the metallic surface follows the order: Cu/SiO2 > Raney Cu > Cu/Al2O3 > Cu/TiO2. Given the charge-frequency relationship these support-dependent frequency shifts are attributed to changes in the charging of the Cu surface caused by support effects. The Cu surface is more electron deficient for Cu/SiO2 and electron enriched for Cu/ TiO2. For the Cu/ZnO(/Al2O3) samples, which are important as industrial methanol synthesis catalysts, band assignments are complicated by a low nu(C-O) on Cu+ sites connected to the ZnO matrix. However, Cu/ZnO(/Al2O3) has a spectral feature at 2065-68 cm(-1), which is a lower frequency than observed in the Cu single crystal studies in the literature and thus indicative of a negative charging of the Cu surface in such systems. Experiments with co-adsorption of CO and electron-withdrawing formate on Cu/ZnO and Cu/SiO2 show that nu(C-O) in the adsorbed CO shifts upwards with increasing HCOO coverage. This illustrates that the surface charge is donated to the electron-withdrawing formate adsorbate, and as a result co-adsorbed CO experiences a more charge depleted Cu surface that yields higher nu(C-O). The support-dependent surface charging may thus affect the interaction with adsorbates on the metal surface and thereby impact the catalytic properties of the Cu surface. Dilution of the samples in KBr, which has been used in many studies in the literature, had pronounced effects on the spectra. The presence of KBr leads to an increase in nu(C-O) indicative of an electron depleted surface attributed to transfer of electron-withdrawing bromine species from KBr to the sample.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available