4.7 Article

High-pressure melting experiments on Fe-Si alloys and implications for silicon as a light element in the core

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 456, Issue -, Pages 47-54

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2016.08.042

Keywords

core; light element; iron-silicon alloy; high pressure; melting

Funding

  1. Grants-in-Aid for Scientific Research [16H06285] Funding Source: KAKEN

Ask authors/readers for more resources

We carried out melting experiments on Fe-Si alloys to 127 GPa in a laser-heated diamond-anvil cell (DAC). On the basis of textural and chemical characterizations of samples recovered from a DAC, a change in eutectic liquid composition in the Fe-FeSi binary system was examined with increasing pressure. The chemical compositions of coexisting liquid and solid phases were quantitatively determined with field emission-type electron microprobes. The results demonstrate that silicon content in the eutectic liquid decreases with increasing pressure to less than 1.5 +/- 0.1 wt.% Si at 127 GPa. If silicon is a single light element in the core, 4.5 to 12 wt.% Si is required in the outer core in order to account for its density deficit from pure iron. However, such a liquid core, whose composition is on the Si-rich side of the eutectic point, crystallizes less dense solid, CsCl (B2)-type phase at the inner core boundary (ICB). Our data also show that the difference in silicon concentration between coexisting solid and liquid is too small to account for the observed density contrast across the ICB. These indicate that silicon cannot be the sole light element in the core. Previous geochemical and cosmochemical arguments, however, strongly require similar to 6 wt.% Si in the core. It is possible that the Earth's core originally included similar to 6 wt.% Si but then became depleted in silicon by crystallizing SiO2 or MgSiO3. (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available