4.7 Article

A dual-potential electrochemiluminescence sensor for ratiometric detection of carcinoembryonic antigen based on single luminophor

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 325, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2020.128776

Keywords

ECL; Ratiometric sensor; Single luminophor; Graphene-Pt; Ti3C2 MXenes

Funding

  1. National Natural Science Foundation of China [21375055, 21505063, 21405070, 21427808]
  2. Natural Science Foundation of Shandong Province [ZR2018BB059, ZR2017BB084, ZR2015BQ007]
  3. Shandong Tai-Shan Scholar Research Fund

Ask authors/readers for more resources

Ratiometric electrochemiluminescence (ECL) assays have attracted widespread attentions in biosensing owing to their precise measurements by eliminating the environmental interferences. However, they mostly needed two eligible luminophors, increasing the complexity of the systems and limiting their practical applications. Herein, using luminol as single luminophor, a dual-potential ratiometric ECL strategy was proposed to detect carcinoembryonic antigen (CEA). The luminol exhibited cathodic and anodic emissions on graphene-ionic liquid-platinum (GR-IL-Pt) composites and Ti3C2 MXenes-Au NPs hybrids, respectively. Then, a sandwich ECL sensor was fabricated using GR-IL-Pt composites as matrix to immobilize the primary antibodies of CEA and Ti3C2 MXenes-Au NPs hybrids as platform to load the secondary antibodies. With the presence of CEA, the ratio of anodic ECL to cathodic ECL (ECLanodic/ECLcathodic) increased obviously, realizing sensitive ratiometric detection of CEA. In addition, the ECLanodic/ECLcathodic was independent with the concentrations of H2O2, greatly improving the test reliability. The developed ECL sensor exhibited a sensitive detection toward CEA, performing a wide linearity in the range of 0.1 pg mL 1-10 ng mL(-1) with a low detection limit of 34.58 fg mL(-1) (S/N = 3). Furthermore, this strategy exhibited a good practicality to detect CEA in human serums, providing a promising strategy in ECL bioanalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available