4.7 Article

Per- and polyfluoroalkyl substances in soil and sediments: Occurrence, fate, remediation and future outlook

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 748, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.141251

Keywords

PFASs; Soil and sediments; Occurrence; Sorption; Remediation

Ask authors/readers for more resources

Perfluoroalkyl and polyfluoroalkyl substances (PFAS5) are contaminants of great concern due to their widespread occurrence and persistence in the environments (i.e., in water, soil and sediment) and potential toxicology even at very low concentration. The main focus of this review is on the PFASs in soil and sediments. More specifically, this review systematically examines the occurrence and toxicological effects with associated risks, fate (i.e., PFASs adsorption by soil and sediment, transportation and transformation, and bioaccumulation), and remediation practices of PFASs in soil and sediment. Various models and equations such as fugacity-based multimedia fate and hydrodynamic models are used to study the fate, transport, and transformation of PFASs. Among different remediation practices, sorption is the dominant process for the removal of PFASs from soil and sediments. Results also indicate that PFASs adsorption onto activated carbon decrease with the increase of carbon chain length in the PFASs. The longer-chain PFASs have larger partition coefficient values than shorter-chained PFASs. Sorption of PFASs to soil and sediments are mainly governed by different electrostatic interactions, hydrogen bonds formation, hydrophobic interactions, organic content in soil and sediments, and ligand exchange. Other technology such as thermal treatment might be potential in the removal of PAFSs, but need further study to elucidate a conclusion. Finally, the associated challenges and future outlook have been included. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available