4.7 Article

The indispensable role of assimilation in methane driven nitrate removal

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 746, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.141089

Keywords

Methanotroph; Advanced nitrogen removal; Nitrate assimilation; Nitrogen recovery

Funding

  1. National Natural Science Foundation of China [51808108]
  2. Natural Science Foundation of Jiangsu Province [BK20180409]

Ask authors/readers for more resources

Methane is a greenhouse gas that can be released from sludge anaerobic fermentation in wastewater treatment plants. Methane is also an alternative additional carbon source for deep nitrate removal of secondary effluent. A sequencing experiment was conducted to study the efficacy of nitrate removal with methane as the sole carbon source. The maximum nitrate removal rate was 17.2 mg-N.L-1.d(-1). Nitrate removal was confirmed to arise via two pathways: aerobic methane oxidation coupled to denitrification (AME-D) contributed to 55% of the nitrate removal with the rest stemming from assimilation by methanotrophs. Additional study revealed that nitrate assimilated by methanotrophs was used for the synthesis of proteins, resulting in a protein content of 52.2% dry weight. Metagenomic sequencing revealed a high abundance of nitrate assimilation and glutamine synthetase genes, which were primarily provided by methanotrophs (mainly Methylomonas). Assimilatory nitrate removal by methanotrophs has a high potential for advanced nitrogen removal and for alleviating methane emissions. The nitrogen-rich biomass produced by nitrate absorption could also be used as a biofertilizer for nitrogen recycling. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available