4.7 Article

Intraday effects of ambient PM1 on emergency department visits in Guangzhou, China: A case-crossover study

Journal

SCIENCE OF THE TOTAL ENVIRONMENT
Volume 750, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.scitotenv.2020.142347

Keywords

PM1; Hourly effects; Emergency department visits; Case-crossover design; China

Funding

  1. Key Research Center for Humanities and Social Sciences in Hubei Province (Hubei University of Medicine) [2020ZD001]
  2. Health Science and Technology Project of Guangzhou [20191A011114]

Ask authors/readers for more resources

The study investigated the impact of size-specific particles on emergency department visits in Guangzhou from 2015 to 2016, finding that PM1 has adverse effects on ED visits within a few hours, especially during the cold months. The results may assist in establishing hourly air quality standards and optimizing the allocation of emergency medical resources.
Background: Short-term exposure to PM2.5 has been widely associated with human morbidity and mortality. However, most up-to-date research was conducted at a daily timescale, neglecting the intra-day variations in both exposure and outcome. As an important fraction in PM2.5, PM1 has not been investigated about the very acute effects within a few hours. Methods: Hourly data for size-specific PMs (i.e., PM1, PM2.5, and PM10), all-cause emergency department (ED) visits and meteorological factors were collected from Guangzhou, China, 2015-2016. A time-stratified case-crossover design with conditional logistic regression analysis was performed to evaluate the hourly association between size-specific PMs and ED visits, adjusting for hourly mean temperature and relative humidity. Subgroup analyses stratified by age, sex and season were conducted to identify potential effect modifiers. Results: A total of 292,743 cases of ED visits were included. The effects of size-specific PMs exhibited highly similar lag patterns, wherein estimated odds ratio (OR) experienced a slight rise from lag 0-3 to 4-6 h and subsequently attenuated to null along with the extension of lag periods. In comparison with PM2.5 and PM10, PM1 induced slightly larger effects on ED visits. At lag 0-3 h, for instance, ED visits increased by 1.49% (95% confidence interval: 1.18-1.79%), 1.39% (1.12-1.66%) and 1.18% (0.97-1.40%) associated with a 10-mu g/m(3) rise, respectively, in PM1, PM2.5 and PM10. We have detected a significant effect modification by season, with larger PM1-associated OR during the cold months (1.017, 1.013 to 1.021) compared with the warm months (1.010, 1.005 to 1.015). Conclusions: Our study provided brand-new evidence regarding the adverse impact of PM1 exposure on human health within several hours. PM-associated effects were significantly more potent during the cold months. These findings may aid health policy-makers in establishing hourly air quality standards and optimizing the allocation of emergency medical resources. (C) 2020 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available