4.7 Article

Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications

Journal

RENEWABLE ENERGY
Volume 162, Issue -, Pages 1076-1086

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2020.07.071

Keywords

thermoelectric energy; Finite element method; CNT-Nanofluid; Pulsating flow

Ask authors/readers for more resources

In this study, performance assessment of a thermoelectric generator module located in between two channels where carbon-nanotube/water nanofluid streams flow is studied with combined effects of nanoparticle inclusion and flow pulsations. The finite element method is used to solve the 3D unsteady coupled fluid flow, heat transfer and electric field equations. Different pertinent parameters effects such as Reynolds number (between 250 and 1000), nanoparticle volume fraction (between 0 and 0.04), pulsating flow frequency (Strouhal number between 0.01 and 0.1) and amplitude (between 0.25 and 0.95) on the power generation are examined. It is observed that flow pulsation changes the dynamic features of thermoelectric power generated in the device. Higher power values are obtained when Reynolds number, flow pulsation amplitude and nanoparticle solid volume fraction rise. However, the effect is reverse for higher pulsation frequencies. Including nano sized particles further enhances the performance of the device with flow pulsation. It is also observed that 24.4% enhancement in the power are achieved for nanofluid with flow pulsation when lowest and highest pulsation amplitudes are compared. At lowest pulsation frequency and highest amplitude 14.2% enhancement in power is ob-tained for water as compared to steady flow case while this amount rises to 31% for carbon nanotube nanofluid at the highest solid volume fraction. System identification method is used to obtain dynamic lower order model of the system for different pulsation amplitudes to predict the time dependent power generated in the thermoelectric generator device. (c) 2020 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available