4.8 Article

Energy industrial water withdrawal under different energy development scenarios: A multi-regional approach and a case study of China

Journal

RENEWABLE & SUSTAINABLE ENERGY REVIEWS
Volume 135, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.rser.2020.110224

Keywords

Energy water nexus; Industrial water withdrawal; Water stress; Multi-regional analysis; Energy transformation; Energy base

Funding

  1. National Key Research and Development Program of China [2018YFB0604301]
  2. BP
  3. Tsinghua University

Ask authors/readers for more resources

This paper focuses on the impact of energy development on water resources and proposes a supply-demand-integrated method. The findings indicate that China's energy industry faces significant water scarcity issues, requiring a series of measures to alleviate water stress.
Increasing water demand for energy industries has raised concerns for the compliance of energy industry development and water resources constraints. The regional characteristics of uneven distribution of energy and water resources exacerbates regional energy-related water shortage. This paper focus on quantitative analysis of energy development impacts on water resources that considers regional characteristics. A supply-demand-integrated method is proposed to assess water stress of energy industry for multiple regions and multiple energy types under different energy development scenarios. China has a typical mismatch characteristic of energy and water resources. Case studies of China are conducted at both regional and energy-base scales. Results show that the water stress of energy industry in northwest regions (40%) is higher than that of the national average value (24%) in 2015. The carbon emission reduction measures can save the energy industrial water withdrawal by about 16%-33% in 2030, compared with the Business as Usual Scenario. Interregional power transmission would result in an over 100% value of the water stress in energy output areas. The coal chemical industry is high-water-consuming and accounts for a large proportion of the water demand in energy bases. The technological progress and capacity reduction of high-water-consuming technologies can reduce the water stress. Both water demand side and water supply side measures are suggested to reach the coordinated development of energy industry with water resources.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available