4.7 Article

Global evaluation of terrestrial near-surface air temperature and specific humidity retrievals from the Atmospheric Infrared Sounder (AIRS)

Journal

REMOTE SENSING OF ENVIRONMENT
Volume 252, Issue -, Pages -

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.rse.2020.112146

Keywords

-

Funding

  1. National Basic Research Program of China [2017YFA0603703]
  2. Winokur Seed Grant in the Environmental Sciences from Harvard University's Center for the Environment

Ask authors/readers for more resources

The study used triple collocation to validate AIRS Level 3 retrievals of near-surface atmospheric state over land. The results showed that AIRS retrievals correlate well with ground observations outside the tropics, but less well in the tropics.
Global observations of near-surface air temperature and specific humidity over land are needed for a variety of applications, including to constrain global estimates of evapotranspiration (ET). Spaceborne hyperspectral observations, such as those from NASA's Atmospheric Infrared Sounder (AIRS) mission, show promise for meeting this need, yet there are surprisingly few validation studies of AIRS near-surface atmospheric state retrievals. In this study, we use triple collocation to validate AIRS Level 3 retrievals of near-surface atmospheric state over land using twelve years of gridded station observations and two reanalyses. Deseasonalized AIRS retrievals correlate well with deseasonalized ground observations outside the tropics, but correlate less well in the tropics. Lower temporal sensitivity near the surface in the tropics contributes to the lower correlation for near-surface air temperature and is consistent with known physics of the tropical atmosphere, in which temperatures outside the boundary layer (which dominate the AIRS retrieval signal) are poorly correlated with those near the surface. Retrievals in the tropics may also be more susceptible to errors in cloud-clearing algorithms, and to uncertainty in surface emissivity. Since ET is greatest in the tropics, and tropical measurement networks are particularly sparse, this work motivates new approaches for measuring ET in the tropics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available