4.7 Article

High-Spatial-Resolution Three-dimensional Imaging of Human Spinal Cord and Column Anatomy with Postmortem X-ray Phase-Contrast Micro-CT

Journal

RADIOLOGY
Volume 298, Issue 1, Pages 135-146

Publisher

RADIOLOGICAL SOC NORTH AMERICA (RSNA)
DOI: 10.1148/radiol.2020201622

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (Cluster of Excellence)-Munich Center for Advanced Photonics [EXE158]
  2. International Max Plank Research School of Advanced Photon Science (IMPRS-APS)
  3. European COST Action [CA16122]

Ask authors/readers for more resources

This study evaluated the use of postmortem x-ray phase-contrast micro-CT for detailed neuroimaging of human spines, demonstrating that Thiel-embalmed samples provided soft-tissue contrast within the vertebral canal, while formalin-fixed boneless cords showed higher gray versus white matter contrast and microscale visualization of deep medullary vasculature and neuronal perikarya.
Background: Modern high-spatial-resolution radiologic methods enable increasingly detailed volumetric postmortem investigations of human neuroanatomy for diagnostic, research, and educational purposes. Purpose: To evaluate the viability of postmortem x-ray phase-contrast micro-CT to provide tissue-conserving, high-spatial-resolution, three-dimensional neuroimaging of the human spinal cord and column by comparing quality of x-ray phase-contrast microCT images of nondissected Thiel-embalmed human spines with images of extracted formalin-fixed human spinal cords. Specific focus was placed on assessing the detection of micrometric spinal cord soft-tissue structure and vasculature. Materials and Methods: In this study from August 2015 to August 2019, three Thiel-embalmed human spinal column samples, unilaterally perfused with an iodinated vascular contrast agent, and three extracted formalin-fixed spinal cord samples were imaged postmortem at a synchrotron radiation facility. Propagation-based x-ray phase-contrast micro-CT was used with monochromatic 60-keV x-rays and a detector with either 46-mu m or 8-mu m pixel sizes. A single-distance phase-retrieval algorithm was applied to the acquired CT projection images in advance of filtered back projection CT reconstruction. The influence on image quality of Thiel versus formalin embalming was examined, and images were qualitatively evaluated in terms of the value of their anatomic representations. Results: The x-ray phase-contrast micro-CT of Thiel-embalmed samples resulted in soft-tissue contrast within the vertebral canal, despite evident nervous tissue deterioration after Thiel embalming. Gross spinal cord anatomy, spinal meninges, contrast agentenhanced spinal vasculature, and spinal nerves were all well rendered alongside surrounding vertebral bone structure. The x-ray phase-contrast micro-CT of formalin-fixed boneless cords led to much higher gray versus white matter contrast and to microscale visualization of deep medullary vasculature and neuronal perikarya. Conclusion: This work demonstrated the use of x-ray phase-contrast micro-CT for detailed volumetric anatomic visualization of embalmed human spines. The method provided three-dimensional display of bone, nervous tissue, and vasculature at microscale resolutions without exogenous contrast agents. (C) RSNA, 2020.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available