4.6 Article

Frontotemporal dementia-linked P112H mutation of TDP-43 induces protein structural change and impairs its RNA binding function

Journal

PROTEIN SCIENCE
Volume 30, Issue 2, Pages 350-365

Publisher

WILEY
DOI: 10.1002/pro.3990

Keywords

neurodegenerative disease; protein aggregation; RNA recognition motif; RNA‐ binding protein

Funding

  1. Academia Sinica
  2. Ministry of Science and Technology, Taiwan

Ask authors/readers for more resources

This study compared the biochemical and biophysical properties of TDP-43 truncated proteins with and without the P112H mutation, revealing that the mutated proteins have higher thermal stability, impaired RNA-binding activity, and reduced aggregation propensity. The P112H mutation causes local conformational changes in TDP-43, disrupting interactions with nucleic acids. These findings suggest that the P112H mutation contributes to frontotemporal dementia through functional impairment of RNA metabolism and changes in protein clearance mechanisms.
TDP-43 forms the primary constituents of the cytoplasmic inclusions contributing to various neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia (FTD). Over 60 TDP-43 mutations have been identified in patients suffering from these two diseases, but most variations are located in the protein's disordered C-terminal glycine-rich region. P112H mutation of TDP-43 has been uniquely linked to FTD, and is located in the first RNA recognition motif (RRM1). This mutation is thought to be pathogenic, but its impact on TDP-43 at the protein level remains unclear. Here, we compare the biochemical and biophysical properties of TDP-43 truncated proteins with or without P112H mutation. We show that P112H-mutated TDP-43 proteins exhibit higher thermal stability, impaired RNA-binding activity, and a reduced tendency to aggregate relative to wild-type proteins. Near-UV CD, 2D-nuclear-magnetic resonance, and intrinsic fluorescence spectrometry further reveal that the P112H mutation in RRM1 generates local conformational changes surrounding the mutational site that disrupt the stacking interactions of the W113 side chain with nucleic acids. Together, these results support the notion that P112H mutation of TDP-43 contributes to FTD through functional impairment of RNA metabolism and/or structural changes that curtail protein clearance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available