4.8 Article

Naphthylphthalamic acid associates with and inhibits PIN auxin transporters

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2020857118

Keywords

auxin transport; NPA; PIN; auxin transport inhibitor; naphthylphthalamic acid

Funding

  1. Austrian Science Fund [FWF P21533-B20]
  2. German Research Foundation [DFG HA3468/6-1]
  3. European Research Council [742985]
  4. European Research Council (ERC) [742985] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

NPA is a key inhibitor of directional auxin transport in plants, acting by directly inhibiting PINs. Research also shows an effect of NPA on PIN dimerization, offering insights into structural aspects of PINs related to their transport mechanism.
N-1-naphthylphthalamic acid (NPA) is a key inhibitor of directional (polar) transport of the hormone auxin in plants. For decades, it has been a pivotal tool in elucidating the unique polar auxin transport-based processes underlying plant growth and development. Its exact mode of action has long been sought after and is still being debated, with prevailing mechanistic schemes describing only indirect connections between NPA and the main transporters responsible for directional transport, namely PIN auxin exporters. Here we present data supporting a model in which NPA associates with PINs in a more direct manner than hitherto postulated. We show that NPA inhibits PIN activity in a heterologous oocyte system and that expression of NPA-sensitive PINs in plant, yeast, and oocyte membranes leads to specific saturable NPA binding. We thus propose that PINs are a bona fide NPA target. This offers a straightforward molecular basis for NPA inhibition of PIN-dependent auxin transport and a logical parsimonious explanation for the known physiological effects of NPA on plant growth, as well as an alternative hypothesis to interpret past and future results. We also introduce PIN dimerization and describe an effect of NPA on this, suggesting that NPA binding could be exploited to gain insights into structural aspects of PINs related to their transport mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available