4.8 Article

The Ig heavy chain protein but not its message controls early B cell development

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2004810117

Keywords

Ig heavy chain checkpoint; PreB cell antigen receptor; allelic exclusion; read-through translation; early B cell development

Funding

  1. Netherlands Organisation for Scientific Research (NWO) ZonMW [91213018]

Ask authors/readers for more resources

Development of progenitor B cells (ProB cells) into precursor B cells (PreB cells) is dictated by immunoglobulin heavy chain checkpoint (IgHCC), where the IgHC encoded by a productively rearranged Igh allele assembles into a PreB cell receptor complex (PreBCR) to generate signals to initiate this transition and suppressing antigen receptor gene recombination, ensuring that only one productive Igh allele is expressed, a phenomenon known as Igh allelic exclusion. In contrast to a productively rearranged Igh allele, the Igh messenger RNA (mRNA) (IgHR) from a nonproductively rearranged Igh allele is degraded by nonsense-mediated decay (NMD). This fact prohibited firm conclusions regarding the contribution of stable IgHR to the molecular and developmental changes associated with the IgHCC. This point was addressed by generating the Igh(Ter5H Delta TM) mouse model from Igh(Ter5H) mice having a premature termination codon at position +5 in leader exon of Igh(Ter5H) allele. This prohibited NMD, and the lack of a transmembrane region (Delta TM) prevented the formation of any signaling-competent PreBCR complexes that may arise as a result of read-through translation across premature Ter5 stop codon. A highly sensitive sandwich Western blot revealed read-through translation of Igh(Ter5H) message, indicating that previous conclusions regarding a role of IgHR in establishing allelic exclusion requires further exploration. As determined by RNA sequencing (RNA-Seq), this low amount of IgHC sufficed to initiate PreB cell markers normally associated with PreBCR signaling. In contrast, the Igh(Ter5H Delta TM) knock-in allele, which generated stable IgHR but no detectable IgHC, failed to induce PreB development. Our data indicate that the IgHCC is controlled at the level of IgHC and not IgHR expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available