4.8 Article

Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2010868118

Keywords

CO reduction; solid electrolyte; pure acetic acid; CO2 reduction

Funding

  1. NSF [2029442]
  2. Rice University
  3. J. Evans Attwell-Welch postdoctoral fellowship by the Smalley-Curl Institute
  4. King Abdullah University of Science and Technology
  5. Directorate For Engineering
  6. Emerging Frontiers & Multidisciplinary Activities [2029442] Funding Source: National Science Foundation

Ask authors/readers for more resources

The direct and continuous generation of pure acetic acid solutions via electrochemical CO reduction is demonstrated through rational designs in a Cu catalyst and PSE reactor. The Cu nanocube catalyst shows unprecedented acetate performance with a maximal Faradaic efficiency of 43% and ultrahigh relative purity of up to 98 wt%, along with excellent stability of over 150 hours continuous operation.
Electrochemical CO2 or CO reduction to high-value C2+ liquid fuels is desirable, but its practical application is challenged by impurities from cogenerated liquid products and solutes in liquid electrolytes, which necessitates cost- and energy-intensive downstream separation processes. By coupling rational designs in a Cu catalyst and porous solid electrolyte (PSE) reactor, here we demonstrate a direct and continuous generation of pure acetic acid solutions via electrochemical CO reduction. With optimized edge-to-surface ratio, the Cu nanocube catalyst presents an unprecedented acetate performance in neutral pH with other liquid products greatly suppressed, delivering a maximal acetate Faradaic efficiency of 43%, partial current of 200 mA.cm(-2), ultrahigh relative purity of up to 98 wt%, and excellent stability of over 150 h continuous operation. Density functional theory simulations reveal the role of stepped sites along the cube edge in promoting the acetate pathway. Additionally, a PSE layer, other than a conventional liquid electrolyte, was designed to separate cathode and anode for efficient ion conductions, while not introducing any impurity ions into generated liquid fuels. Pure acetic acid solutions, with concentrations up to 2 wt% (0.33 M), can be continuously produced by employing the acetate-selective Cu catalyst in our PSE reactor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available