4.8 Article

A transporter for delivering zinc to the developing tiller bud and panicle in rice

Journal

PLANT JOURNAL
Volume 105, Issue 3, Pages 786-799

Publisher

WILEY
DOI: 10.1111/tpj.15073

Keywords

rice; tiller bud (TB); OsZIP4; node; vascular bundles; Zn distribution

Categories

Funding

  1. National Key Research and Development Program of China [2016YFD0100704]
  2. National Natural Science Foundation of China [31470347, 31770269]
  3. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources [SKLCUSA-b201709]
  4. JSPS KAKENHI [16H06296]
  5. Ohara Agricultural foundation

Ask authors/readers for more resources

OsZIP4 is a protein involved in the transport of Zn in rice, expressed in TB and nodes, and induced under Zn deficiency. Mutations in OsZIP4 alter Zn distribution, affecting rice development and yield.
Tiller number is one of the most important agronomic traits that determine rice (Oryza sativa) yield. Active growth of tiller bud (TB) requires high amount of mineral nutrients; however, the mechanism underlying the distribution of mineral nutrients to TB with low transpiration is unknown. Here, we found that the distribution of Zn to TB is mediated by OsZIP4, one of the ZIP (ZRT, IRT-like protein) family members. The expression of OsZIP4 was highly detected in TB and nodes, and was induced by Zn deficiency. Immunostaining analysis revealed that OsZIP4 was mainly expressed in phloem of diffuse vascular bundles in the nodes and the axillary meristem. The mutation of OsZIP4 did not affect the total Zn uptake, but altered Zn distribution; less Zn was delivered to TB and new leaf, but more Zn was retained in the basal stems at the vegetative growth stage. Bioimaging analysis showed that the mutant aberrantly accumulated Zn in enlarged and transit vascular bundles of the basal node, whereas in wild-type high accumulation of Zn was observed in the meristem part. At the reproductive stage, mutation of OsZIP4 resulted in delayed panicle development, which is associated with decreased Zn distribution to the panicles. Collectively, OsZIP4 is involved in transporting Zn to the phloem of diffuse vascular bundles in the nodes for subsequent distribution to TBs and other developing tissues. It also plays a role in transporting Zn to meristem cells in the TBs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available