4.7 Review

Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review

Journal

PHYSIOLOGIA PLANTARUM
Volume 172, Issue 2, Pages 1106-1132

Publisher

WILEY
DOI: 10.1111/ppl.13328

Keywords

-

Categories

Funding

  1. Council of Scientific and Industrial Research (CSIR)

Ask authors/readers for more resources

Drought stress triggers defensive mechanisms in plants, which involve the synthesis of phytohormones and secondary metabolites to alleviate water loss and oxidative stress, thus protecting and aiding plant growth and development under drought conditions.
Drought stress negatively affects crop performance and weakens global food security. It triggers the activation of downstream pathways, mainly through phytohormones homeostasis and their signaling networks, which further initiate the biosynthesis of secondary metabolites (SMs). Roots sense drought stress, the signal travels to the above-ground tissues to induce systemic phytohormones signaling. The systemic signals further trigger the biosynthesis of SMs and stomatal closure to prevent water loss. SMs primarily scavenge reactive oxygen species (ROS) to protect plants from lipid peroxidation and also perform additional defense-related functions. Moreover, drought-induced volatile SMs can alert the plant tissues to perform drought stress mitigating functions in plants. Other phytohormone-induced stress responses include cell wall and cuticle thickening, root and leaf morphology alteration, and anatomical changes of roots, stems, and leaves, which in turn minimize the oxidative stress, water loss, and other adverse effects of drought. Exogenous applications of phytohormones and genetic engineering of phytohormones signaling and biosynthesis pathways mitigate the drought stress effects. Direct modulation of the SMs biosynthetic pathway genes or indirect via phytohormones' regulation provides drought tolerance. Thus, phytohormones and SMs play key roles in plant development under the drought stress environment in crop plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available