4.7 Article

Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy?

Journal

DRUG DELIVERY
Volume 23, Issue 9, Pages 3408-3416

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/10717544.2016.1189465

Keywords

Glioblastoma chemotherapy; nanostructured lipid carriers; polymeric nanoparticles; solid lipid nanoparticles; temozolomide

Ask authors/readers for more resources

Context: Glioblastoma is a malignant brain tumor originating in the central nervous system. Successfully therapy of this disease required the efficient delivery of therapeutic agents to the tumor cells and tissues. Delivery of anticancer drugs using novel nanocarriers is promising in glioma treatment.Objective: Polymeric nanoparticles (PNPs), solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs) were constructed for the delivery of temozolomide (TMZ). The anti-tumor effects of the three kinds of nanocarriers were compared to provide the optimum choice for gliomatosis cerebri treatment.Methods: TMZ-loaded PNPs (T-PNPs), SLNs (T-SLNs), and NLCs (T-NLCs) were formulated. Their particle size, zeta potential, drug encapsulation efficiency (EE), and drug loading (DL) capacity were evaluated. Anti-tumor efficacies of the three kinds of nanocarriers were evaluated on U87 malignant glioma cells (U87MG cells) and mice-bearing malignant glioma model.Results: T-NLCs displayed the best anti-tumor activity than other formulations in vivo and in vitro. The most significantly glioma inhibition was observed on NLCs formulations than PNPs and SLNs.Conclusion: This work demonstrates that NLCs can deliver TMZ into U87MG cells more efficiently, with higher inhibition efficacy than PNPs and SLNs. T-NLCs could be an excellent drug delivery system for glioblastoma chemotherapy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available