4.7 Article

Evidence for the association of target-site resistance in cyp51 with reduced DMI sensitivity in European Cercospora beticola field isolates

Journal

PEST MANAGEMENT SCIENCE
Volume 77, Issue 4, Pages 1765-1774

Publisher

JOHN WILEY & SONS LTD
DOI: 10.1002/ps.6197

Keywords

Cercospora beticola; ergosterol; sterol demethylation inhibitor; cyp51; EC50

Ask authors/readers for more resources

This study identified mutations associated with reduced sensitivity in C. beticola isolates collected from different European countries. The experiment showed that some mutations were related to lower EC50 values, indicating a possible correlation between target site mutations and reduced sensitivity.
BACKGROUND Cercospora leaf spot caused by Cercospora beticola is the most relevant foliar disease in sugar beet cultivation. In the last decade a decreasing sensitivity of C. beticola towards demethylation inhibitors (DMIs) occurred. Different mechanisms mediating a reduced sensitivity towards DMIs have been identified in different plant pathogens to date, such as target site mutations, over-expression or active excretion of the fungicide. RESULTS A sequencing of the cytochrome P450-dependent sterol 14 alpha-demethylase gene sequence (cyp51) of diverse C. beticola isolates collected in different European countries with reduced DMI sensitivity was performed in order to find a possible correlation of mutations with higher EC50 values. The amino acid alterations Y464S, L144F and I309T combined with L144F were found to be associated with a reduced sensitivity. Furthermore, mutations I387M, M145W and M145W with E460Q were found uniquely. Additionally, constitutive and fungicide triggered expression of cyp51 was assayed by means of RT-qPCR. A very strong induction of cyp51 mRNA expression in sensitive isolates suggests that the fungal cells upregulate expression to maintain ergosterol biosynthesis in DMI presence. The less intensive cyp51 induction in isolates with higher EC50 values underlines the possible correlation of the found target-site mutations with reduced sensitivity. CONCLUSION This study provides new results about possible alterations in the target gene mediating reduced sensitivity of C. beticola towards DMIs and hypothesized a fungicide induced over-expression of the target enzyme CYP51 as natural reaction of the fungus to fungicide application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available