4.3 Article

MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor

Journal

DOMESTIC ANIMAL ENDOCRINOLOGY
Volume 54, Issue -, Pages 60-67

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.domaniend.2015.09.005

Keywords

miR-10b; Granulosa cell; Brain-derived neurotropic factor; Human chorionic gonadotropin

Funding

  1. National Support Program of China [2011BAD28B05-3]
  2. National Spark Plan [2013GA850003]
  3. Chinese Universities Scientific Fund [2452015029]

Ask authors/readers for more resources

Brain-derived neurotropic factor (BDNF) and its high-affinity receptor, tyrosine kinase receptor B, have been assumed to be involved in female reproduction and have recently shown to play an essential role in follicle activation and oocyte maturation. In this study, we analyzed the expression of miR-10b and BDNF in the ovary and discovered that the expression of miR-10b was higher in monotocous goat ovaries than in polytocous goat ovaries, whereas the expression pattern of BDNF in ovary was opposite. Moreover, human chorionic gonadotropin induced rapid and transient expression of BDNF messenger RNA and protein. In contrast, human chorionic gonadotropin upregulated miR-10b expression in a time-dependent manner. The BDNF gene was identified as a direct target of miR-10b using a dual-luciferase reporter assay. Transfection of granulosa cells with miR-10b decreased BDNF messenger RNA and protein levels. MiR-10b overexpression inhibited cell proliferation, whereas BDNF promoted cell proliferation. However, a combined treatment with miR-10b and BDNF promoted cell proliferation, indicating that the reintroduction of BDNF reversed the suppressive effect of miR-10b. These results demonstrate that miR-10b downregulates BDNF expression in granulosa cells by directly targeting the 3' untranslated regions and plays an important role in inhibiting granulosa cell proliferation by targeting BDNF. (C) 2016 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available