4.6 Article

Local field enhancement using a photonic-plasmonic nanostructure

Journal

OPTICS EXPRESS
Volume 29, Issue 2, Pages 1102-1108

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.415956

Keywords

-

Categories

Funding

  1. Boston University

Ask authors/readers for more resources

Optical nanoantennas have the ability to efficiently confine, localize resonance, and significantly enhance electromagnetic fields at a subwavelength scale. By combining optical nanoantennas with Slanted Bound states in the continuum cavities, even stronger confinement can be achieved. The proposed hybrid system demonstrates six orders of magnitude local intensity enhancement, paving the way for applications such as optical trapping, optical sensing, nonlinear optics, and quantum optics.
Over the last few years, optical nanoantennas are continuously attracting interest owing to their ability to efficiently confine, localize resonance, and significantly enhanced electromagnetic fields at a subwavelength scale. However, such strong confinement can be further enhanced by using an appropriate combination of optical nanoantennas and Slanted Bound states in the continuum cavities. Here, we propose to synergistically bridge the plasmonic nanoantennas and high optical quality-factor cavities to numerically demonstrate six orders of magnitude local intensity enhancement without critical coupling conditions. The proposed hybrid system paves a new way for applications requiring highly confined fields such as optical trapping, optical sensing, nonlinear optics, quantum optics, etc. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available