4.6 Article

Polarization-independent multi-channel retroreflective metasurfaces based on extraordinary optical diffraction

Journal

OPTICS EXPRESS
Volume 28, Issue 25, Pages 37276-37283

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.411381

Keywords

-

Categories

Funding

  1. National Key Research and Development Program of China [SQ2017YFA0700201]
  2. National Natural Science Foundation of China [61971435]

Ask authors/readers for more resources

Retroreflection can be achieved by phase gradient imparted by super-cells of metasurfaces. Nevertheless, in most cases, retroreflection can only be achieved for one specific polarization. In this paper, we propose an alternative design strategy and reveal that a polarizationin-dependent multi-channel metasurface based on extraordinary optical diffraction (EOD) can achieve high-efficient retroreflection. A unary unit cell, instead of binary unit cells, is employed to canalize impinging EM waves along targeted diffraction channels. Under oblique incidence, only the -1st diffraction order is maintained and the 0th order and others are suppressed through structural design while the reflection is unaffected under normal incidence. In this way, we can achieve retroreflection in three channels. A proof-of-principle prototype was designed, fabricated and measured to verify this design strategy. The prototype can operate at 20.0 GHz under the incident angle of +/- 48.6 degrees and 0 degrees with the efficiency of retroreflection about 90%. Both the simulated and measured results show an excellent performance of retroreflection along the three channels, regardless of the polarization state of incident waves. This method offers a fast implementation for retrodirective characteristics with facile planar fabrication and can also be easily extended to THz or optical regimes. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available