4.8 Article

A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells

Journal

NATURE NANOTECHNOLOGY
Volume 16, Issue 1, Pages 104-113

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41565-020-00793-0

Keywords

-

Ask authors/readers for more resources

This study presents a nanoparticle-based strategy for killing CSCs in tumors by inducing CSC differentiation with all-trans retinoic acid release under hypoxic conditions and triggering cell death with camptothecin release in response to increasing reactive oxygen species levels in differentiating CSCs.
Tumour heterogeneity remains a major challenge in cancer therapy owing to the different susceptibility of cells to chemotherapy within a solid tumour. Cancer stem-like cells (CSCs), which reside in hypoxic tumour regions, are characterized by high tumourigenicity and chemoresistance and are often responsible for tumour progression and recurrence. Here we report a nanotherapeutic strategy to kill CSCs in tumours using nanoparticles that are co-loaded with the differentiation-inducing agent, all-trans retinoic acid, and the chemotherapeutic drug, camptothecin. All-trans retinoic acid is released under hypoxic conditions, leading to CSC differentiation in the hypoxic niche. In differentiating CSC, the reactive oxygen species levels increase, which then causes the release of camptothecin and subsequent cell death. This dual strategy enables controlled drug release in CSCs and reduces stemness-related drug resistance, enhancing the chemotherapeutic response. In breast tumour mouse models, treatment with the nanoparticles suppresses tumour growth and prevents post-surgical tumour relapse and metastasis. Chemoresistant cancer stem-like cells (CSCs) can be selectively killed by a nanoparticle, which releases an agent under hypoxic conditions that induces CSC differentiation, and a chemotherapeutic drug in response to reactive oxygen species in differentiating CSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available