4.8 Review

Graphene bilayers with a twist

Journal

NATURE MATERIALS
Volume 19, Issue 12, Pages 1265-1275

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41563-020-00840-0

Keywords

-

Ask authors/readers for more resources

Near a magic twist angle, bilayer graphene transforms from a weakly correlated Fermi liquid to a strongly correlated two-dimensional electron system with properties that are extraordinarily sensitive to carrier density and to controllable environmental factors such as the proximity of nearby gates and twist-angle variation. Among other phenomena, magic-angle twisted bilayer graphene hosts superconductivity, interaction-induced insulating states, magnetism, electronic nematicity, linear-in-temperature low-temperature resistivity and quantized anomalous Hall states. We highlight some key research results in this field, point to important questions that remain open and comment on the place of magic-angle twisted bilayer graphene in the strongly correlated quantum matter world. Magic-angle twisted bilayer graphene plays host to many interesting phenomena, including superconductivity. This Review highlights key research results in the field, points toward important open questions, and comments on the place of magic-angle twisted bilayer graphene in the strongly correlated quantum matter world.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available