4.6 Article

Development of Second Generation Activity-Based Chemical Probes for Sirtuins

Journal

MOLECULES
Volume 26, Issue 1, Pages -

Publisher

MDPI
DOI: 10.3390/molecules26010011

Keywords

sirtuin; activity-based; chemical probes

Funding

  1. NIH/NIGMS [1R15GM123393]
  2. 2020 VCU CCTR Endowment Fund (from National Center for Advancing Translational Sciences) [UL1TR002649]
  3. VCU
  4. NIGMS/NIH [P20GM103449]

Ask authors/readers for more resources

This study developed simple activity-based chemical probes for investigating active sirtuin content and successfully enabled cell imaging of sirtuin activity change, providing new tools for future drug discovery strategies.
NAD(+) (nicotinamide adenine dinucleotide)-dependent protein deacylases, namely, the sirtuins, are important cell adaptor proteins that alter cell physiology in response to low calorie conditions. They are thought to mediate the beneficial effects of calorie restriction to extend longevity and improve health profiles. Novel chemical probes are highly desired for a better understanding of sirtuin's roles in various biological processes. We developed a group of remarkably simple activity-based chemical probes for the investigation of active sirtuin content in complex native proteomes. These probes harbor a thioacyllysine warhead, a diazirine photoaffinity tag, as well as a terminal alkyne bioorthogonal functional group. Compared to their benzophenone-containing counterparts, these new probes demonstrated improved labeling efficiency and sensitivity, shortened irradiation time, and reduced background signal. They were applied to the labeling of individual recombinant proteins, protein mixtures, and whole cell lysate. These cell permeable small molecule probes also enabled the cellular imaging of sirtuin activity change. Taken together, our study provides new chemical biology tools and future drug discovery strategies for perturbing the activity of different sirtuin isoforms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available