4.8 Review

Current and future applications of induced pluripotent stem cell-based models to study pathological proteins in neurodegenerative disorders

Journal

MOLECULAR PSYCHIATRY
Volume 26, Issue 7, Pages 2685-2706

Publisher

SPRINGERNATURE
DOI: 10.1038/s41380-020-00999-7

Keywords

-

Funding

  1. Researcher Chair from the Fonds de Recherche du Quebec en Sante (FRQS)
  2. Canadian Institutes of Health Research (CIHR)
  3. CIHR
  4. FRQS
  5. FRQS doctoral research award

Ask authors/readers for more resources

Neurodegenerative disorders arise from cellular mechanism failures, with pathogenic proteins contributing to non-cell autonomous toxicity. Utilizing human in vitro models is crucial for understanding protein aggregation mechanisms in these diseases.
Neurodegenerative disorders emerge from the failure of intricate cellular mechanisms, which ultimately lead to the loss of vulnerable neuronal populations. Research conducted across several laboratories has now provided compelling evidence that pathogenic proteins can also contribute to non-cell autonomous toxicity in several neurodegenerative contexts, including Alzheimer's, Parkinson's, and Huntington's diseases as well as Amyotrophic Lateral Sclerosis. Given the nearly ubiquitous nature of abnormal protein accumulation in such disorders, elucidating the mechanisms and routes underlying these processes is essential to the development of effective treatments. To this end, physiologically relevant human in vitro models are critical to understand the processes surrounding uptake, release and nucleation under physiological or pathological conditions. This review explores the use of human-induced pluripotent stem cells (iPSCs) to study prion-like protein propagation in neurodegenerative diseases, discusses advantages and limitations of this model, and presents emerging technologies that, combined with the use of iPSC-based models, will provide powerful model systems to propel fundamental research forward.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available