4.6 Article

Autophagy-Dependent Increased ADAM10 Mature Protein Induced by TFEB Overexpression Is Mediated Through PPARα

Journal

MOLECULAR NEUROBIOLOGY
Volume 58, Issue 5, Pages 2269-2283

Publisher

SPRINGER
DOI: 10.1007/s12035-020-02230-8

Keywords

Alzheimer's disease; Autophagy; Bafilomycin A1; Cortex; Hippocampus; 3-Methyl adenine; sAPP alpha; TFEB

Categories

Funding

  1. National Institute of Aging (NIA), National Institute of Health (NIH) [1R21AG060299]

Ask authors/readers for more resources

The study demonstrates that TFEB expression induces ADAM10 in an autophagy-dependent manner through PPAR alpha, promoting nonamyloidogenic processing of APP.
Nonamyloidogenic processing of amyloid precursor protein (APP) by augmenting ADAM10 is a promising therapeutic strategy for Alzheimer's disease (AD). Therefore identification of molecular pathways that regulate ADAM10 expression is crucial. Autophagy is strongly dysregulated in AD, and TFEB was recently shown to be a master regulator of autophagy-lysosome pathway (ALP). Here, we report that TFEB expression in HeLa cells increased ADAM10 mature form by 72% (p < 0.01, n = 4), while TFEB knockdown by CRISPR strategy reduced ADAM10 mature form by 36% (p < 0.05, n = 4). Autophagy inhibition by 3-methyladenine (3-MA), but not bafilomycin A1 (BAF1), reduced ADAM10 mature form by 49% (p < 0.05, n = 4) in the TFEB expressing HeLa cells. Autophagy activation by 3 h of starvation increased ADAM10 to 91% (p < 0.001, n = 6) relative to 51% (p < 0.01, n = 6) in the nutrient-fed cells. Further, siRNAs targeted against PPAR alpha in HeLa cells decreased ADAM10 levels by 28% (p < 0.05, n = 6) relative to the cells treated with scrambled siRNAs. Further, incubation of EGFP-TFEB expressing HeLa cells with PPAR alpha antagonist, but not PPAR beta or PPAR gamma antagonists, prevented TFEB-induced increase in ADAM10 levels. Importantly, flag-TFEB expression in the brain also increased ADAM10 by 60% (p < 0.05, n = 3) in the cortical and 34% (p < 0.001, n = 3) in the hippocampal homogenates. ADAM10 activity also increased by 57% (p < 0.01, n = 3) in the HeLa cells. Finally, TFEB-induced ADAM10 potentiation led to increased secretion of sAPP alpha by 154% (p < 0.001, n = 3) in the cortex and 62% (p < 0.001, n = 3) in the hippocampus. Thus, TFEB expression enhances nonamyloidogenic processing of APP. In conclusion, TFEB expression induces ADAM10 in an autophagy-dependent manner through PPAR alpha.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available