4.7 Article

Genomic imbalances in the placenta are associated with poor fetal growth

Journal

MOLECULAR MEDICINE
Volume 27, Issue 1, Pages -

Publisher

SPRINGER
DOI: 10.1186/s10020-020-00253-4

Keywords

Aneuploidy; Confined placental mosaicism; Copy number variant; Fetal growth restriction; Placenta; Pregnancy; Small-for-gestational age; Trisomy

Funding

  1. Canadian Institutes of Health Research (CIHR) [F16-04459]
  2. Thrasher Research Fund Early Career Award [12745]
  3. BC Children's Hospital Research Institute
  4. SickKids Catalyst Scholar in Genetics
  5. CIHR Doctoral Fellowship

Ask authors/readers for more resources

This study confirms the importance of placental aneuploidy and assesses the potential contribution of CNVs to fetal growth. The findings suggest that placental genomic imbalances may underlie up to 18% of SGA cases in the studied population.
Background: Fetal growth restriction (FGR) is associated with increased risks for complications before, during, and after birth, in addition to risk of disease through to adulthood. Although placental insufficiency, failure to supply the fetus with adequate nutrients, underlies most cases of FGR, its causes are diverse and not fully understood. One of the few diagnosable causes of placental insufficiency in ongoing pregnancies is the presence of large chromosomal imbalances such as trisomy confined to the placenta; however, the impact of smaller copy number variants (CNVs) has not yet been adequately addressed. In this study, we confirm the importance of placental aneuploidy, and assess the potential contribution of CNVs to fetal growth. Methods: We used molecular-cytogenetic approaches to identify aneuploidy in placentas from 101 infants born small-for-gestational age (SGA), typically used as a surrogate for FGR, and from 173 non-SGA controls from uncomplicated pregnancies. We confirmed aneuploidies and assessed mosaicism by microsatellite genotyping. We then profiled CNVs using high-resolution microarrays in a subset of 53 SGA and 61 control euploid placentas, and compared the load, impact, gene enrichment and clinical relevance of CNVs between groups. Candidate CNVs were confirmed using quantitative PCR. Results: Aneuploidy was over tenfold more frequent in SGA-associated placentas compared to controls (11.9% vs. 1.1%; p = 0.0002, OR = 11.4, 95% CI 2.5-107.4), was confined to the placenta, and typically involved autosomes, whereas only sex chromosome abnormalities were observed in controls. We found no significant difference in CNV load or number of placental-expressed or imprinted genes in CNVs between SGA and controls, however, a rare and likely clinically-relevant germline CNV was identified in 5.7% of SGA cases. These CNVs involved candidate genes INHBB, HSD11B2, CTCF, and CSMD3. Conclusions: We conclude that placental genomic imbalances at the cytogenetic and submicroscopic level may underlie up to similar to 18% of SGA cases in our population. This work contributes to the understanding of the underlying causes of placental insufficiency and FGR, which is important for counselling and prediction of long term outcomes for affected cases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available