4.3 Article

Mineralogy of volcanic calciocarbonatites from the Trig Point Hill debris flow, Kerimasi volcano, Tanzania: implications for the altered natrocarbonatite hypothesis

Journal

MINERALOGICAL MAGAZINE
Volume 85, Issue 4, Pages 484-495

Publisher

MINERALOGICAL SOC
DOI: 10.1180/mgm.2020.97

Keywords

carbonatite; natrocarbonatite; nyerereite; alkali carbonate; monticellite; jacobsite; magnesioferrite; Kerimasi; Tinderet; Oldoinyo Lengai

Categories

Funding

  1. Natural Sciences and Engineering Council of Canada
  2. Lakehead University
  3. Almaz Petrology

Ask authors/readers for more resources

The study presents the petrological characteristics of carbonatite blocks in the Trig Point Hill flow from Kerimasi volcano, suggesting that these rocks may be primary phases rather than secondary alteration products of nyerereite.
A major debris flow, the Trig Point Hill flow, originating from Kerimasi volcano (Tanzania) contains numerous blocks of extrusive/pyroclastic carbonatites similar to those exposed at the rim of the currently inactive crater. The blocks of calcite carbonatite consist of: (1) large clasts of corroded and altered coarse grained calcite; (2) primary prismatic inclusion bearing phenocrystal calcite; and (3) a matrix consisting primarily of fine-grained prismatic calcite. The large clasts are inclusion free and exhibit a 'corduroy-like' texture resulting from solution along cleavage planes. The resulting voids are filled by brown Fe-Mn hydroxides/oxides and secondary calcite. The prismatic or lath-shaped phenocrystal calcite is not altered and contains melt inclusions consisting principally of primary Na-Ca carbonates which contain earlier-formed crystals of monticellite, periclase, apatite, Mn-Mg-magnetite, Mn-Fe-sphalerite and Nb-perovskite. Individual Na-Ca carbonate inclusions are of uniform composition, and the overall range of all inclusions analysed (wt.%) is from 28.7 to 35.9 CaO; 16.7-23.6 Na2O; 0.5-2.8 K2O, with minor SO3 (1.1-2.2) and SrO (0.34-1.0). The Na-Ca carbonate compositions are similar to that of shortite, although this phase is not present. The Na-Ca carbonates are considered to be primary deuteric phases and not secondary minerals formed after nyerereite. Monticellite shows limited compositional variation and contains 2-4 wt.% MnO and 12 wt.% FeO and is Mn-poor relative to monticellite in Oldoinyo Lengai natrocarbonatite. Periclase is Fe-bearing with up to 13 wt.% FeO. Spinels are Cr-free, Mn-poor and belong to the magnetite-magnesioferrite series in contrast to Mn-rich spinels of the magnetite-jacobsite series occurring in Oldoinyo Lengai natrocarbonatite. The matrix in which the 'corduroy' clasts and phenocrystal calcite are set consists of closely packed small prisms of calcite lacking melt inclusions, with interstitial fine-grained apatite, baryte, strontianite and minor fluorite. Pore spaces are filled with secondary Mn-Fe hydroxides/oxides, anhydrite and gypsum. The hypothesis that flow-aligned calcite in volcanic calciocarbonatites from Kerimasi, Tinderet, Homa and Catanda is altered nyerereite is discussed and it is considered that these calcite are either primary phases or altered melilite. The nyerereite alteration hypothesis is discussed with respect to the volumetric and compositional aspects of pseudomorphism by dissolution-precipitation replacement mechanisms. This study concludes that none of the volcanic calciocarbonatites containing flow-aligned calcite phenocrysts are altered natrocarbonatite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available