4.7 Article

Insights into the mechanochemical synthesis of Sn-β: Solid-state metal incorporation in beta zeolite

Journal

MICROPOROUS AND MESOPOROUS MATERIALS
Volume 309, Issue -, Pages -

Publisher

ELSEVIER
DOI: 10.1016/j.micromeso.2020.110566

Keywords

Sn-beta zeolite; Solid-state reactions; Metal incorporation; Mechanochemistry; Biomass conversion

Funding

  1. IMPRS-RECHARGE

Ask authors/readers for more resources

Sn-beta zeolite is an active material for the isomerization of glucose to fructose, which is one of the critical reactions for the valorization of biomass. The material is synthesized either by a top-down or bottom-up approach. In this work, we use a top-down approach for the synthesis of Sn-beta to incorporate the tin atoms into the *BEA frame-work. As compared to the literature, we replace the process of manual grinding with the use of ball milling to make the process reproducible, flexible, and scalable. The primary focus of this work is to investigate the processes occurring during the synthesis by a variety of characterization tools. These techniques include thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), physisorption, X-ray diffraction (XRD), and chemisorption monitored by Fourier-transform infrared spectroscopy (FTIR). The synthesis is followed by characterizing the material at various stages of synthesis. Finally, the materials are tested for the isomerization of glucose to fructose to assess the chemical nature of Sn-beta zeolites. The results of this investigation provide several insights into the mechanochemical process for the incorporation of atoms in a zeolite framework. For instance, the importance of the size of precursors, distribution of Sn atoms during synthesis, and chemical changes occurring during milling are highlighted. These insights could produce a blueprint for the synthesis of a variety of solid catalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available