4.6 Article

Deep convolutional neural networks for multiplanar lung nodule detection: Improvement in small nodule identification

Journal

MEDICAL PHYSICS
Volume 48, Issue 2, Pages 733-744

Publisher

WILEY
DOI: 10.1002/mp.14648

Keywords

computer‐ aided detection; computed tomography; convolutional neural network; deep learning; pulmonary nodule detection

Ask authors/readers for more resources

The study aims to develop an accurate deep learning framework for nodule detection through multiplanar candidate detection and multiscale false positive reduction. The proposed system achieves good performance for lung nodule detection on the LIDC-IDRI dataset, demonstrating its effectiveness across different nodule sizes.
Purpose Early detection of lung cancer is of importance since it can increase patients' chances of survival. To detect nodules accurately during screening, radiologists would commonly take the axial, coronal, and sagittal planes into account, rather than solely the axial plane in clinical evaluation. Inspired by clinical work, the paper aims to develop an accurate deep learning framework for nodule detection by a combination of multiple planes. Methods The nodule detection system is designed in two stages, multiplanar nodule candidate detection, multiscale false positive (FP) reduction. At the first stage, a deeply supervised encoder-decoder network is trained by axial, coronal, and sagittal slices for the candidate detection task. All possible nodule candidates from the three different planes are merged. To further refine results, a three-dimensional multiscale dense convolutional neural network that extracts multiscale contextual information is applied to remove non-nodules. In the public LIDC-IDRI dataset, 888 computed tomography scans with 1186 nodules accepted by at least three of four radiologists are selected to train and evaluate our proposed system via a tenfold cross-validation scheme. The free-response receiver operating characteristic curve is used for performance assessment. Results The proposed system achieves a sensitivity of 94.2% with 1.0 FP/scan and a sensitivity of 96.0% with 2.0 FPs/scan. Although it is difficult to detect small nodules (i.e., <6 mm), our designed CAD system reaches a sensitivity of 93.4% (95.0%) of these small nodules at an overall FP rate of 1.0 (2.0) FPs/scan. At the nodule candidate detection stage, results show that the system with a multiplanar method is capable to detect more nodules compared to using a single plane. Conclusion Our approach achieves good performance not only for small nodules but also for large lesions on this dataset. This demonstrates the effectiveness of our developed CAD system for lung nodule detection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available