4.3 Article

Electrostatically bound lanreotide peptide - gold nanoparticle conjugates for enhanced uptake in SSTR2-positive cancer cells

Publisher

ELSEVIER
DOI: 10.1016/j.msec.2020.111272

Keywords

Targeted delivery; Lanreotide peptide; Gold nanoparticles; Somatostatin 2 receptors

Funding

  1. Department of Atomic Energy

Ask authors/readers for more resources

Lanreotide peptide (LP) has high affinity to somatostatin receptors like SSTR2 and is commonly used in the treatment of neuro-endocrine tumors. The main objective of this study is to target gold nanoparticles (AuNPs) towards SSTR2-positive cancer cells using lanreotide peptide (LP) as the targeting agent for enhanced tumor uptake and antitumor activity. pH mediated changes in the surface potential of LP and AuNP is used to prepare electrostatically bound AuNP-LP complexes. AuNP-LP complex formation was demonstrated by UV-Visible spectroscopy, surface potential, dynamic light scattering (DLS), small angle X-ray scattering and HR-TEM. Confocal microscopy and flow cytometric studies show that AuNP-LP complex has higher cellular uptake in SSTR2 expressed cancer cells (MCF-7 and AR42J) than in CHO cells. The enhanced cellular uptake of LP coated AuNPs lead to similar to 1.5 to 2-fold GSH depletion and enhanced ROS generation in MCF-7 cells. The preferential cytotoxicity of the AuNP-LP complex towards MCF-7 and AR42J cells, as revealed by MTT assay, is consistent with the increased cellular uptake. Our studies demonstrate that LP coated AuNP can be used as an effective platform to selectively target SSTR2 positive cancer cells for combination therapy approaches involving gold nanoparticles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available