4.6 Article

Kinetic and thermodynamic studies of neutral dye removal from water using zirconium metal-organic framework analogues

Journal

MATERIALS CHEMISTRY AND PHYSICS
Volume 258, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2020.123924

Keywords

Neutral dye; Metal-organic frameworks; Water treatment; UiO-66; Kinetic studies; Thermodynamic studies

Funding

  1. Walailak University under WU research fund, Thailand [WU-61123]

Ask authors/readers for more resources

A series of isostructural water stable metal-organic framework materials UiO-66-X (X = H, NH2, NO2) were synthesized by solvothermal synthesis. The study investigated their dye adsorption capacity, revealing that the functional group of the organic linker significantly contributes to the adsorption capacity of MOFs. Experimentally, it was found that the adsorbent with a functional group creating more intermolecular forces will enhance the adsorption capacity.
A series of isostructural water stable UiO-66-X (X = H, NH2, NO2), one of the most well-known metal-organic framework (MOF) materials, was synthesized by solvothermal synthesis. Their dye adsorption capacity toward a neutral dye, Phenol Red (PR), was investigated for the first time in this research in order to elucidate how the functional group of the organic linker contribute to the adsorption capacity. The operational parameters, i.e. pH, adsorbent concentration, initial dye concentration, contact time and temperature were monitored. The maximum adsorption capacities of UiO-66, UiO-66-NO2 and UiO-66-NH2 were measured to be 19 mg/g, 11 mg/g and 27 mg/g, respectively. The adsorption kinetics of all three adsorbents were similar and fitted best with pseudosecond-order kinetics model. Adsorption isotherms of the adsorbents can be explained by Freundlich model which suggests that the adsorption of PR on the adsorbents can be both physisorption and chemisorption. Thermodynamic studies indicated that the adsorption process in all studied adsorbents was spontaneous, endothermic and entropic-driven which was confirmed by the obtained thermodynamic variables. Functional group of the organic ligand was found to contribute significantly to the adsorption capacity of MOFs. The adsorbent with a functional group that can create more intermolecular forces will enhance the adsorption capacity. Experimentally, UiO-66-NH2 showed the highest adsorption capacity when compared to UiO-66 and UiO66-NO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available