4.5 Article

Medial meniscal extrusion greater than 4 mm reduces medial tibiofemoral compartment contact area: a biomechanical analysis of tibiofemoral contact area and pressures with varying amounts of meniscal extrusion

Journal

KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY
Volume 29, Issue 9, Pages 3124-3132

Publisher

SPRINGER
DOI: 10.1007/s00167-020-06363-0

Keywords

Knee; Meniscus; Arthroscopy; Meniscal repair; Biomechanics

Funding

  1. University of Connecticut Health Center/UConn Musculoskeletal Institute

Ask authors/readers for more resources

This study evaluated the effects of meniscal extrusion on medial compartment contact area and pressures in the knee. It found that extrusion greater than 4 mm reduced contact area, but did not significantly increase pressure. Centralization of the meniscus effectively restored contact area to intact levels.
Purpose The primary objective of this study is to evaluate the contact areas, contact pressures, and peak pressures in the medial compartment of the knee in six sequential testing conditions. The secondary objective is to establish how much the medial meniscus is able to extrude, secondary to soft tissue injury while keeping its roots intact. Methods Ten cadaveric knees were dissected and tested in six conditions: (1) intact meniscus, (2) 2 mm extrusion, (3) 3 mm extrusion, (4) 4 mm extrusion, (5) maximum extrusion, (6) capsular based meniscal repair. Knees were loaded with a 1000-N axial compressive force at 0 degrees, 30 degrees, 60 degrees, and 90 degrees for each condition. Medial compartment contact area, average contact pressure, and peak contact pressure data were recorded. Results When compared to the intact state, there was no statistically significant difference in medial compartment contact area at 2 mm of extrusion or 3 mm of extrusion (n.s.). There was a statistically significant decrease in contact area compared to the intact state at 4 mm (p = 0.015) and maximum extrusion (p < 0.001). The repair state was able to improve medial compartment contact area, and there was no statistically significant difference between the repair and the intact states (n.s.). No significant differences were found in the average contact pressure between the repair, intact, or maximum extrusion conditions at any flexion angle (n.s.). No significant differences were found in the peak contact pressure between the repair, intact, or maximum extrusion conditions at any flexion angle (n.s.). Conclusion In this in vitro model, medial meniscus extrusion greater than 4 mm reduced medial compartment contact area, but meniscal extrusion did not significantly increase pressure in the medial compartment. Additionally, meniscal centralization was effective in restoring the medial tibiofemoral contact area to intact state when the meniscal extrusion was secondary to meniscotibial ligament injury. The diagnosis of meniscal extrusion may not necessarily involve meniscal root injury. Since it is known that meniscal extrusion greater than 3 or 4 mm has a biomechanical impact on tibiofemoral compartment contact area and pressures, specific treatments can be established. Centralization restored medial compartment contact area to the intact state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available