4.8 Article

Artificial Light-Harvesting Metallacycle System with Sequential Energy Transfer for Photochemical Catalysis

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 143, Issue 3, Pages 1313-1317

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c12522

Keywords

-

Funding

  1. National Natural Science Foundation of China [21672036]
  2. Natural Science Foundation of Shanghai [18ZR1400900]

Ask authors/readers for more resources

Efficient light-harvesting systems with sequential energy transfer are crucial for utilizing solar energy in photosynthesis. In this study, a quadrilateral platinum(II) metallacycle containing tetraphenylethylene was used as a light-harvesting platform, achieving high efficiency in energy transfer. The system was also utilized for photochemical catalysis for alkylation of C-H bonds in aqueous solution, showing enhanced catalytic activity compared to other systems.
Highly efficient light-harvesting systems with the sequential energy transfer process are significant for utilizing solar energy in photosynthesis. Herein, we report a quadrilateral platinum(II) metallacycle containing tetraphenylethylene (M1) as a light-harvesting platform. The M1 assembly serves as an ideal donor because of the aggregation-induced emission (AIE) effect, realizing two-step sequential energy transfer from the M1 assembly to eosin Y (ESY) and then to sulforhodamine (SR101) with high efficiency. ESY was used as a bridge in a relay mode during this process. To better mimic natural photosynthesis, the M1-ESY-SR101 system was utilized as photochemical catalysis for alkylation of C-H bonds in aqueous solution, showing enhanced catalytic activity as compared with the M1-ESY system or ESY/SR101 alone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available