4.8 Article

Large Electrostrictive Coefficient in a Two-Dimensional Hybrid Perovskite Ferroelectric

Journal

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Volume 143, Issue 3, Pages 1664-1672

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jacs.0c12907

Keywords

-

Funding

  1. National Natural Science Foundation of China [21991142, 21831004]

Ask authors/readers for more resources

The phosphonium-based 2D HOIP ferroelectric (EATMP)PbBr4 has been discovered with high Curie temperature and electrostrictive coefficient, showing excellent potential for applications in future smart devices.
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) are attracting tremendous interest for their great scientific and technological potential in photovoltaics and optoelectronics. Although the ferroelectricity in 2D HOIPs has been greatly developed, however, to date no phosphonium-based 2D HOIP ferroelectrics have yet been found. Meanwhile, electrostriction plays an important role in the electromechanical behavior of ferroelectrics, while it has never been reported for 2D HOIP ferroelectrics. Here, we present the first phosphonium-based 2D HOIP ferroelectric (EATMP)PbBr4 (EATMP = (2-aminoethyl)trimethylphosphanium) with a direct bandgap of 2.84 eV. Notably, (EATMP)PbBr4 possesses a high Curie temperature of 534 K, which is the highest among all reported 2D HOIP ferroelectrics. Moreover, it exhibits a large electrostrictive coefficient of about 3.96 m(4) C-2 as well, far exceeding those of PVDF (1.3 m(4) C-2) and inorganic ones (similar to 0.034-0.096 m(4) C-2). With excellent ferroelectric and piezoelectric properties and the merit of easy fabrication, (EATMP)PbBr4 shows great potential in applications for future smart devices of actuators, transducers, and sensors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available