4.6 Article

Eco-friendly Route for Thermoplastic Polyurethane Elastomers with Bio-based Hard Segments Composed of Bio-glycol and Mixtures of Aromatic-Aliphatic and Aliphatic-Aliphatic Diisocyanate

Journal

JOURNAL OF POLYMERS AND THE ENVIRONMENT
Volume 29, Issue 7, Pages 2140-2149

Publisher

SPRINGER
DOI: 10.1007/s10924-020-01992-5

Keywords

Environmental friendly synthesis; Thermoplastic polyurethane elastomers; Bio-based diisocyanates; Diisocyanate mixtures; Low volatility diisocyanate

Ask authors/readers for more resources

The research focused on the synthesis and properties examination of partially bio-based thermoplastic polyurethane elastomers. By using different diisocyanate mixtures, the study analyzed the chemical structure, thermal, thermomechanical, mechanical, and physicochemical properties of the materials.
Application of bio-based diisocyanates with low volatility instead petrochemical diisocyanates has positive impact on environment by reduction of hazardous effects on living organisms and lead to bio-based polyurethanes (bio-PUs) with good usage properties. This work was focused on the synthesis and chosen properties examination of partially bio-based thermoplastic polyurethane elastomers (bio-PUs) obtained using diisocyanate mixtures, polytetrahydrofurane (PolyTHF) and bio-1,3-propanediol (bio-PDO). Two types of diisocyanate mixtures were prepared as follows: aliphatic-aliphatic based on hexamethylene diisocyanate with partially bio-based aliphatic diisocyanate Tolonate (TM) X FLO 100 (HDI-FLO) and aromatic-aliphatic based on diphenylmethane diisocyanate with partially bio-based diisocyanate (MDI-FLO) with reduction of 25 mass% of petrochemical diisocyanate. Bio-PUs were obtained via prepolymer method. Thermoplastic polyurethane elastomers have been examined in the terms of chemical structure and thermal, thermomechanical, mechanical and physicochemical properties. Bio-PU based on HDI-FLO diisocyanate mixture exhibited higher thermal stability. The beginning of thermal decomposition took a place at lower temperature ca. 30 oC) and lower rate than the MDI-PU based materials. DMA analysis showed that HDI-FLO based polyurethanes exhibited greater capacity to accumulate energy and higher stiffness. Both materials characterized similar tensile strength and hardness, but with difference that TPU based on HDI-FLO relieved greater elongation at break about 360% reached 813%. Taking into account versatile properties of bio-TPU, these material can find application in many branches of industry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available