4.8 Article

Investigation of Hot Carrier Cooling Dynamics in Monolayer MoS2

Journal

JOURNAL OF PHYSICAL CHEMISTRY LETTERS
Volume 12, Issue 2, Pages 861-868

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpclett.0c03110

Keywords

-

Funding

  1. National Natural Science Foundation of China [21573094, 11774122, 11574112, 61575079]

Ask authors/readers for more resources

The hot carrier cooling dynamics in monolayer MoS2 C-excitonic state is affected by the hot phonon bottleneck and Auger heating effects, and can be prolonged by increasing the excitation photon energy or absorbed photon flux. The combination of these effects weakens the hot phonon bottleneck and extends the hot carrier lifetime, which has implications for various applications in advanced energy conversion and quantum technology.
The hot carrier cooling dynamics in the C-excitonic state of monolayer MoS2 is slowed down by the hot phonon bottleneck and Auger heating effects, as exploited by ultrafast transient absorption spectroscopy. The hot carrier cooling process, determined by the hot phonon bottleneck, can be prolonged through rising the excitation photon energy or increasing the absorbed photon flux. By inducing the Auger heating effect under higher absorbed photon flux, the hot carrier lifetime also increases at the low excitation photon energy. When these two effects are combined under higher excitation photon energy and higher absorbed photon flux, the hot phonon bottleneck is gradually weakened because of Auger recombination. In addition, the similar hot carrier phenomenon can be observed in A/B excitonic states owing to the same physical mechanism. Our work establishes a solid photophysics foundation for 2D transition-metal dichalcogenide applications in advanced energy conversion, optical quantum communication, quantum technology, etc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available