4.6 Article

Structural, Spectroscopic, and Kinetic Insight into the Heating Rate Dependence of Studtite and Metastudtite Dehydration

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 124, Issue 49, Pages 26699-26713

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.0c09082

Keywords

-

Funding

  1. US Department of Energy National Nuclear Security Administration

Ask authors/readers for more resources

Uranyl peroxide minerals studtite (UO2O2 center dot 4H(2)O) and metastudtite (UO2O2 center dot 2H(2)O) are important materials in the nuclear fuel cycle. When heated, they dehydrate and transform to amorphous uranium oxides (UOx), yet phase stability and heating rate dependence of these transformations are poorly understood. This information is critical to proper management of fuel cycle materials. In this work, we use in situ powder X-ray diffraction (PXRD), Raman spectroscopy, and thermogravimetric analysis (TGA) to monitor the dehydration of studtite and metastudtite. Strong linear correlation between the heating rate and phase transition temperature is observed. Geometric contraction and diffusion-related kinetic models describe studtite dehydration at slow heating rates, whereas Avrami-Erofeev or reaction order models become more accurate for faster thermal treatments. A second order model describes the transition from metastudtite to UOx regardless of the heating rate. Water retention during studtite dehydration is indicated by PXRD, Raman spectroscopy, and TGA. We observe mixed-phase UOx dehydration products of metastudtite with a likely formation mechanism involving conversion of some uranyl centers from hexagonal to pentagonal bipyramidal coordination units via peroxide liberation. Our observations clarify over 100 years of measurements on these materials and represent an advancement in understanding the chemical behavior of nuclear fuel cycle materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available