4.4 Article

Exposure to an Immersive Virtual Reality Environment can Modulate Perceptual Correlates of Endogenous Analgesia and Central Sensitization in Healthy Volunteers

Journal

JOURNAL OF PAIN
Volume 22, Issue 6, Pages 707-714

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.jpain.2020.12.007

Keywords

Endogenous analgesia; virtual reality; secondary hyperalgesia; central sensitization

Funding

  1. Masters in Experimental Neuroscience programme at Imperial College London

Ask authors/readers for more resources

The study demonstrated that exposure to an immersive virtual reality environment can modulate perceptual correlates of endogenous pain modulation and secondary hyperalgesia in a human surrogate pain model. These findings suggest that virtual reality may offer a novel mechanism-driven analgesic strategy in patients with altered central pain processing.
Virtual reality (VR) has been shown to produce analgesic effects during different experimental and clinical pain states. Despite this, the top-down mechanisms are still poorly understood. In this study, we examined the influence of both a real and sham (ie, the same images in 2D) immersive arctic VR environment on conditioned pain modulation (CPM) and in a human surrogate model of central sensitization in 38 healthy volunteers. CPM and acute heat pain thresholds were assessed before and during VR/sham exposure in the absence of any sensitization. In a follow-on study, we used the cutaneous high frequency stimulation model of central sensitization and measured changes inmechanical pain sensitivity in an area of heterotopic sensitization before and during VR/sham exposure. There was an increase in CPM efficiency during the VR condition compared to baseline (P < .01). In the sham condition, there was a decrease in CPM efficiency compared to baseline (P < .01) and the real VR condition (P < .001). Neither real nor sham VR had any effect on pain ratings reported during the conditioning period or on heat pain threshold. There was also an attenuation of mechanical pain sensitivity during the VR condition indicating a lower sensitivity compared to sham (P < .05). We conclude that exposure to an immersive VR environment has no effect over acute pain thresholds but can modulate dynamic CPM responses and mechanical hypersensitivity in healthy volunteers. Perspective: This study has demonstrated that exposure to an immersive virtual reality environment can modulate perceptual correlates of endogenous pain modulation and secondary hyperalgesia in a human surrogate pain model. These results suggest that virtual reality could provide a novel mechanism-driven analgesic strategy in patients with altered central pain processing. Crown Copyright (C) 2021 Published by Elsevier Inc. on behalf of United States Association for the Study of Pain, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available