4.7 Article

Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis

Journal

JOURNAL OF NEUROINFLAMMATION
Volume 18, Issue 1, Pages -

Publisher

BMC
DOI: 10.1186/s12974-020-02040-8

Keywords

Depression; miRNA-27a; NLRP3; Pyroptosis; Isoliquiritin

Funding

  1. Ningxia hui autonomous region key research and development plan general project [2018BEG03015]
  2. National Natural Science Foundation of China [81603227, 81460645]
  3. Key research and development projects of east-west cooperation [2017BY079]
  4. Third batch of Ning xia youth talents supporting program [TJGC2018016]

Ask authors/readers for more resources

The results showed that miRNA-27a expression was reduced in the serum of depressed patients and in animal models of depression. Isoliquiritin demonstrated significant antidepressant effects by decreasing NLRP3-mediated pyroptosis through the miRNA-27a/SYK/NF-kappa B axis.
Background The NLRP3-mediated pyroptosis, which could be regulated by miRNA-27a, is a key player in the development of depression. Isoliquiritin is a phenolic flavonoid compound that has been demonstrated to suppress NLRP3-mediated pyroptosis. However, it is still unknown whether isoliquiritin could confer antidepressant activity via decreasing NLRP3-mediated pyroptosis by stimulating miRNA-27a. Thus, in the current study, we explored the antidepressant activity of isoliquiritin and its underlying mechanism. Methods Expression of miRNA-27a in depressed patients or mice was measured using qRT-PCR. Luciferase reporter assay was performed to illustrate the link between miRNA-27a and SYK. Lipopolysaccharide (LPS) and chronic social defeat stress (CSDS) depression models were established to investigate the antidepressant actions of isoliquiritin. Changes in miRNA-27a/SYK/NF-kappa B axis and NLRP3-mediated pyroptosis were also examined. The role of miRNA-27a in isoliquiritin-related antidepressant effect was further investigated by using miRNA-27a inhibitors and mimics of miRNA-27a. Results Our results showed the miRNA-27a expression was downregulated in the serum of depressed patients, and decreased serum and hippocampus expression of miRNA-27a were observed in rodent models of depression. SYK gene expression was significantly reduced by miRNA-27a mimic incubation. Isoliquiritin profoundly attenuated LPS or CSDS-induced depressive symptoms, as well as CSDS-induced anxiety behavior. In the hippocampus, LPS and CSDS decreased miRNA-27a mRNA expression; increased the protein levels of SYK, p-NF-kappa B, and NLRP3: cleaved Caspase-1, IL-1 beta, and GSDMD-N: and elevated the concentration of IL-1 beta, IL-6, and TNF-alpha, which were all restored by isoliquiritin administration. Meanwhile, isoliquiritin upregulated the hippocampal NeuN protein level, improved the survival and morphology of neurons, and decreased pyroptosis-related neuronal cell death. Moreover, isoliquiritin protected primary microglia against LPS and adenosine triphosphate (ATP) elicited NLRP3 inflammasome activation in vitro, evidenced by declined protein levels of p-NF-kappa B, NLRP3; cleaved Caspase-1, IL-1 beta, and GSDMD-N; upregulated miRNA-27a mRNA expression; and decreased the mRNA and protein levels of SYK. Nevertheless, miRNA-27a inhibitors significantly reversed isoliquiritin-generated therapeutic efficacy in CSDS mice and in vitro. Furthermore, the cytoprotective effect of isoliquiritin was similar to that of miRNA-27a mimics in LPS and ATP-treated primary microglia. Taken together, these findings suggest that isoliquiritin possesses potent antidepressant property, which requires miRNA-27a/SYK/NF-kappa B axis controlled decrease of pyroptosis via NLRP3 cascade.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available